
Chapter 9                         Methods for QTL analysis 
 

 79

Chapter 9 
 

Methods for QTL analysis 
 

Julius van der Werf 
 
Regression Methods...................................................................................................... 80 

ANOVA analysis using single marker genotypes....................................................... 80 
ANOVA analysis using multiple marker genotypes. .................................................. 80 
Regression on QTL probability, conditional on marker haplotypes. ........................... 80 
Haley-Knott regression.............................................................................................. 81 
Regression of phenotype on marker type ................................................................... 81 

Maximum Likelihood estimation:.................................................................................. 82 
Comparison of likelihood and regression procedures................................................. 85 
Multiple regression on marker genotypes, ................................................................. 87 
Inverval mapping with marker co-factors (composite interval mapping) .................... 88 

Precision of mapping and hypothesis testing ................................................................. 88 
Permutation testing.................................................................................................... 89 
Bootstrapping............................................................................................................ 89 
Accounting for multiple testing ................................................................................. 89 

References .................................................................................................................... 90 
 
 
In this Chapter we will discuss in more detail regression analysis and Maximum 
likelihood methods for QTL mapping. Regression methods are generally much easier to 
use (standard software like SAS or ASREML can easily be used), and the method is 
much faster computationally. Maximum likelihood is computationally more demanding, 
and specific software is needed. For many designs, results are very similar to regression. 
This makes regression analysis attractive as it can be used in resampling methods. 
Resampling methods are use to determine test statistics for hypothesis testing. In this 
Chapter we will discuss bootstrapping and permutation tests. 
 We will also discuss QTL mapping with multiple markers (more than 2) and methods to 
account for more than one QTL. Accounting for other QTL has been proposed by 
including cofactors, or by using composite interval mapping.  
 
There are two classes of methods that are not discussed in the chapter. Those are the 
mixed model methods and Monte Carlo Markov Chain methods. In both methods, QTLs 
are modeled either as fixed or as random effects, and additional random effects can 
account for polygenic variation. Combined segregation and linkage analysis is needed to 
infer QTL genotype probabilities from marker data.  

Both methods are useful in ‘complex pedigrees’, typical in animal breeding data 
from outbred populations. When line crosses are analysed, or half sib families ignoring 
relationships across families, such methods are less relevant, and they have not been 
extensively used in QTL detection studies. In most animal breeding applications, 
however, such methods are typically needed in genetic evaluations including QTLs.  
We will discuss mixed model methods including QTL effects in chapters 17 and 18.   
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Regression Methods 
 
ANOVA analysis using single marker genotypes. 
 
A marker genotype (or marker-haplotype) represents a fixed effect class. 
 
 y =  µ + MG1 + e 
 
The number of marker genotypes is 2 in backcrosses of inbred lines and 3 in F2 
populations. However, most animal populations are not inbred and could have more 
genotypes, which will have less power. 
The analysis gives an F statistic, and provides a quick and simple method to detect which 
markers are associated with a QTL.  
 

ANOVA analysis using multiple marker genotypes. 
 
Each marker genotype (or marker-haplotype) represents a fixed effects class. 
 
 y =  µ + MG1 + MG2 +……….+ MGn 

 
This is a multiple regression model, and markers can drop out of the model if they are not 
significant. The set of markers that is significant in the final analysis point to the 
existence of a significant QTL effect (or more, depending how far the markers are apart). 
The analysis does not take into account any recombination rates between markers, or 
between QTL and markers. In that sense it is comparable with regression on single 
marker genotype. The multiple marker method is more powerful than single marker 
analysis, and when the markers are well spread over the genome, it is better able to 
distinguish the position of the QTL. Normally, after detection of such a location, analysis 
with interval mapping would be recommended.  
 
Regression on QTL probability, conditional on marker haplotypes. 
 
For a given marker genotype, or marker haplotype that was inherited from the sire, we 
can calculate the probability for having inherited the Q or the q allele. It seems therefore 
natural to regress phenotype on Q-probability. The model is 
 
    y = µ + α.x + e 
 
  where   y is the observed phenotype 

x is the probability of having inherited a paternal Q,  
given the observed marker genotypes, and 
marker/QTL positions: P(Q|mg1, mg2, r1,r12) 
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The  coefficient for x are obtained as in Chapter 7 (Table 4). For a each QTL position, the 
residual sums of squares can be determined, and the estimate of the QTL position is there 
where SSE is minimum. This is interval mapping (see Chapter 7) 
 
Haley-Knott regression 
   
Haley and Knott (1992) have proposed a slight reparameterization from the previous 
model, but the principle is similar. Rather than dealing with marker haplotypes, they 
present a more general model where QTL genotypes are dependent on marker genotypes. 
The probability of carrying a certain QTL genotype depends on the marker genotypes and 
the design 
  
    y = µ + α.x1 + βx2 + e 
 
  where   y is the observed phenotype 

x1 = P(QQ|Mi) – P(qq|Mi) 
x2 = P(Qq|Mi) 

 
x1 and x2 are probabilities for QTL genotypes conditional the flanking marker genotypes. 
The regression coefficients α and β represent the difference between the homozygote 
QTL genotypes, and the QTL dominance effect, respectively. 
Haley and Knott are well known for their proposed regression model, but an important 
result from their paper was the similarity that was shown with maximum likelihood. They 
proposed to use the following test statistic, indicated as ‘approximate Likelihood ratio 
test’: 

   LR = )ln(
full

reduced

SSE

SSE
n  = -n.ln(1-r2) 

 
Which is ration of the residual sums of squares in a model with the QTL (”full’) and a 
model without it (‘reduced’). The term r2 is the usual R-squared, used for the percentage 
of variance explained by the model (only applicable if there are no other fixed effects). 
 
 
 
 
Regression of phenotype on marker type 
 
The previous two regression models proposed regressing phenotype on Q-probability, 
conditional on marker type. As this probability depends on QTL position, relative to 
markers, interval mapping can be used. A regression analysis is needed for all possible 
positions (usually in 1 cM steps) within the marker bracket. 
 
Whittaker et al. (1996) have shown that direct regression of phenotype on marker types, 
provides the same information about location and QTL-effect without having to step to 
all positions on the interval. 
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For interval mapping we used: y = µ + α.x + e           [1] 
 
where x = P(Q|mg1, mg2, r1,r12) 
 
Whittaker et al. (1996) proposed their model for a backcross or F2 population: 
 
   y = µ + αλ.xL  + αρ.xR + e         
 
Now λ = P(Q|XL = M1M1, XR = m2m2) and ρ = P(Q|XL = m1m1, XR = M2M2).  
The term α is the effect of Q. The terms xL and xR refer to left and right marker, and have 
values –1, 0 and 1 for mimi, Mimi and MiMi, respectively. From the regression 
coefficients: β1 = αλ, and β2 = αρ, it was shown (Whittaker et al., 1996) that location and 
QTL effect can be estimated: 
 
location (recombination between M1 and QTL)  
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and the estimate of the QTL effect: 
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where θ = r1+r2(1-2r1). Hence a single analysis can give the same result as a complete 
interval mapping. Note that the assumption is here that there are no QTL’s in the 
neighboring marker-brackets. 
 
 
 
Maximum Likelihood estimation:  
 
In these notes, we will not discuss the detail of a maximum likelihood analysis (for 
interested readers are referred to Lynch and Walsh (1998).  Only the principle is given 
here. 
 
We have a probability of observing certain data (y) for a given set of parameters (θ): 
 
  F(yi)  = P(y|θ) 
 
This function F is indicated as probability density function (pdf). For example, if we take 
normally distributed observations, and the simplest model, with a mean (µ) and standard 
deviation (σ) the pdf looks like: 
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    f(yi| µ, σ) =
2

2
2
1 )y(

e
2

1 σ

µ−

πσ
    [2] 

  
The likelihood is the probability of certain parameters, given the observed data: L(θ| y). 
We can use the same function for this, e.g. 
 

   L(µ, σ|yi)  =
2

2
2
1 )y(

e
2

1 σ

µ−

πσ
 

 
The total likelihood of data set y is calculated as the product of all likelihoods for each 
observation. 
 
   L( µ, σ| y)  =  Πi L(µ, σ|yi)   
 
As these likelihoods can become very small numbers, is better to work with the 
LogLikelihood 
 
   LogL( µ, σ| y)  =  Σi LogL(µ, σ|yi)   
 
Also for an alternative model, e.g. with a QTL effect, we may have different means. 
A new set of parameters is then (µ1, µ2, α, and σ) and we can write the likelihood.  
 

 L(µ1, µ2,, σ|yi)  = P(µ1).
2

2
12

1 )(

2

1 σ
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πσ

−y

e + P(µ2).
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e  [3] 

 

Typically, in QTL analysis, we are not sure about QTL genotype, i.e. whether an 
observation belongs to the Q-mean or to the q-mean. The likelihood is calculated as the 
sum of the two possibilities, each weighted with its probability (=P(µI)). 

 
The estimates of the model parameters are obtained for those values where the likelihood 
is at its maximum. The maximum can be found using maximization routines (EM; 
Newton Raphson; NAG-libraries). 
A test of significance is obtained by comparing the maximum likelihood with the 
likelihood of a model with the tested parameter omitted (reduced model). 
 

LR = 
)mod(_

)mod(_
ln2

elfullLikelihoodMax
elreducedLikelihoodMax

−  

 
The reduced model refers to the null-hypothesis, e.g. "there is no QTL effect" 
 
Using the log-likelihood: LR = -2.(ln_Lr – ln_L) where L stands for LogLikelihood. 
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Example of simple QTL mapping with maximum likelihood 
 
In QTL analysis the data consists not only of phenotypic observations of performance, 
but also of marker genotypes. 
Using the example as in chapter 7, where we looked at a half sib family with known 
paternal marker haplotypes, we could calculate the probability of having inherited the 
paternal QTRL alleles for each of the four marker haplotypes (and given the 
recombination  fractions, i.e. for a given QTL position) 
 
If the dam alleles are fixed there are only two possible QTL genotypes, hence we can 
calculate the likelihood for each observation as in [3]. If the dam alleles are not fixed, we 
would have to sum over all three possibilities. 
In a simple fixed effects model, the ML estimate of the fixed effect parameters is equal to 
the LS estimate of the fixed effects. Hence for a given QTL positions we can calculate µ 
and α from a regression as in [1] and subsequently calculate the likelihood as in [3]. 
 
The following Table shows a likelihood calculation of the example as in Chapter 7, for 
the QTL position M1-Q = 0.1 
 
Phenotype Marker 

haplotye 
Prob(Q|markers) Expected 

phenotype 
(H1-model) LogL0 LogL 

50.98 M1M2 0.9718 50.43 -1.18884 -0.81727 
49.98 M1M2 0.9718 50.43 -0.4575 -0.65658 
50.75 M1m2 0.7451 50.34 -0.73859 -0.59655 
49.75 M1m2 0.7451 50.34 -0.73859 -0.91164 
50.75 m1M2 0.2549 50.16 -0.73859 -0.91152 
49.75 m1M2 0.2549 50.16 -0.73859 -0.59663 
50.52 m1m2 0.0282 50.07 -0.4575 -0.65648 
49.52 m1m2 0.0282 50.07 -1.18884 -0.81739 

   sum -6.24705 -5.96407 
 
Model with no QTL: 
The general mean = µ0 = 50.25. 
SST = (sum of deviations from general mean) = 2.21 giving a variance σ0

2 = 0.316 

The likelihood is calculated according to [2] using µ0 and σ0
2 

The sum of the Log Likelihood over the whole data for the H0-model = -6.247 
 
Model with a QTL 
Regression analysis gave solutions µ = 50.057 and α = 0.386. 
SSE = (sum of deviations from expected phenotype) = 2.05 giving a variance σ2 = 0.292 

The likelihood is calculated according to [3] using  σ2
, and the two means are  
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µQ = µ + α = 50.443  and  µq = µ = 50.057 and the weights are P(Q) and 1-P(Q), 
where P(Q) is given for each individual in the third column of the Table. 

 

The sum of the Log Likelihood over the whole data for the H0-model = -5.964 
 
The LR-value = -2(L0 – L) = -2(-6.247 + 5.964) = 0.57. 
(Note: this is NOT the Maximum Likelihood, as we have used the residual variance as (over) estimated by 
regression). 
 
The approximate LR value from regression was  

appr.LR = )ln(
full

reduced

SSE

SSE
n  = 8.ln(2.21/2.05) = 0.63. 

 
Comparison of likelihood and regression procedures 
 
The difference between maximum likelihood and regression is that the last method 
assumes normality within a marker group, i.e. there is a homogeneous variance within a 
marker group (errors only due to e). Maximum likelihood accounts for the fact that 
within a marker group, some animals have obtained a q and some have obtained a Q, 
hence there are actually two distributions. The fact that the test statistics are practically 
very similar shows that accounting for this bimodality within marker genotypes is not 
very important. Most of the variation is explained from the differences between the 
marker genotypes. Xu(1995)  shows that the regression method is somewhat biased: it 
overestimates the residual variance, and therefore tends to give lower values for the 
approximate LR test. This bias is larger if the difference between Q and q is larger, and 
when there is less certainty about QTL-allele inherited. The largest differences between 
the two methods will be found in the middle of a marker bracket, when there is most 
uncertainty about which QTL allele was inherited.  
Xu’s suggest correction is 
 

 ∑
=

−−=
4

1

222
_ )1(

i
iiecorrectede ppaσσ  

 
where pi is the probability of having inherited Q in marker genotype class i and a is the 
regression coefficient on Q-probability in the regression model. Generally, this 
adjustment has only a small effect, unless the QTL effect is very large and markers are 
far from the QTL position 
 
It should be noted that ML procedures depend on the distribution of the phenotypes. 
Regression analysis is much more robust against deviation from normal distributions. 
On the other hand, in outbred populations, ML is better able to use all possible 
relationships to infer upon marker- and QTL probabilities. With no markers, ML analysis 
would still boil down to a segregation analysis, whereas regression methods would not be 
able to make any inferences at all. However, regression methods combined with a 
genotype-probability-type algorithm could be very competitive to a ML analysis (see 
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Chapters 17 and 18).



Chapter 9                         Methods for QTL analysis 
 

 87

Accounting for additional QTLs 
 
In the examples discussed, we looked at detecting a single QTL in a marker bracket. 
Now, if there other QTL linked to the markers used in the analysis, we would tend to 
estimate the joint effect of two QTL’s, and we would not be able to distinguish between 
one or multiple QTL. Moreover, the inference we would made from analysis regarding 
size of QTL effect and QTL position would both be biased. We may observe two peaks 
in a likelihood map, which would be an indication of the existence of two QTL, but both 
positions  would be biased. Besides avoiding bias, another reason for accounting for 
additional QTL effects is to reduce residual variance, giving more power to an analysis. 
This would also hold for additional  QTL on other chromosomes (unlinked). 
 
A few approached have been proposed to avoid effects of additional linked QTL. 
 
Multiple regression on marker genotypes, 
The effect of a QTL on one marker is corrected for possible effects of linked QTL-
effects. The effects of the linked QTL are taken away by effect by fitting markers close to 
these QTL. A simple regression method that considers all markers has been proposed by 
Kearsey and Hyne (1994).They propose to plot the difference between marker types, i.e. 
one difference for each marker locus.  This is described in more detail by Lynch and 
Walsh (1998, p. 461), who refer to this method as marker-difference regression.
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Interval mapping with marker co-factors (composite interval mapping) 
 
 Jansen (1993) proposed an interval mapping approach where additional markers were 
included in the model as cofactors.  Such an additional QTL (say QTL2) can be 
accounted for if there is information about additional markers (outside the bracket) that 
are linked to QTL2. This analysis is also referred to as composite interval mapping (CIM) 
(Zeng, 1994). Regression is on the additional marker genotypes are, hence, additional 
QTL are accounted for as if they were at the marker locus. 
 

y = µ +  p(QTL1 given marker bracket M1M2) +    markers near QTL2 [5] 
 
Several authors have shown that composite interval mapping gives a large increase in 
power, and much more precision in estimating QTL position. 
 
As we discussed earlier in this chapter, Whittaker et al (1996) found that the regression 
coefficient for two adjacent markers contain all information about position and effect of a 
QTL between those markers. If the QTL is isolated, i.e. there are no  QTL’s in the 
adjacent brackets, than these regression coefficients can not be biased by other QTLs 
outside the bracket. However, no distinction can be made between on or more QTL 
within the bracket. hence, the position estimate within a marker bracket is only unbiased 
if there is only one QTL. If there are more QTL within the bracket, we can not estimate 
their positions. 
   
rather than accounting for more QTL as in [5] we can also account for them with the 
following model: 
y = p(QTL1| M1M2) +  p(QTL2| other markers near QTL2)    [5] 
 
hence this refers to a multiple interval mapping procedure (Kao et al., 1999).  
Some problems here can be that 1) not all markers are informative, especially not in 
outbred populations 2) it is hard to search for the best fitting model (set of positions) as 
there are many combinations possible with multiple QTL.  
The problem of multiple QTL will be further dealt with in chapter 10. 
 
 
 
Precision of mapping and hypothesis testing 
 
Maximum likelihood estimates are approximately normally distributed for large sample 
sizes and confidence intervals can be based don the sampling variances. However, these 
are often not so easy to obtain. 
Approximate 95% confidence intervals for QTL position can be constructed using the 
‘one-LOD rule’ (Lander and Botstein, 1989). All QTL with a LOD score value less than 
1 from the maximum fall within this confidence interval. Note that 1 LOD score 
corresponds to a LR value of 4.61, which has a significance value of 4% for the χ2

1- 
distribution.   
 
LR tests have a χdf

2-distribution, where df refers to the degrees of freedom of the tested 
parameter (i.e. the difference in df between the full model and the restricted model). 
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In QTL analysis, this statistic provides only an approximate test, as the null-hypothesis 
involves a non-mixture distribution whereas the QTL model involves a mixture 
distribution.   
Also regression analysis provide only approximate test statistics, as they assume normal 
distributed errors within  marker type, whereas the distribution is really a mixture of two 
(or 3). 
Simulation studies have been used to examine distributions of test statistics, or to 
determine threshold values. However, such studies rely on the true data have the same 
distribution as the simulated data.  
 
Permutation testing 
 
Churchill and Doerge (1994) proposed permutation testing to obtain empirical 
distributions for test statistics. In a permutation test, the data is randomly shuffled over 
the marker data. Analysis of the permutated data provides a test statistic, as it is the result 
of the null-hypothesis (marker not associated with QTL).  
The number of permutations required is about 10,000 for a reasonable approximation of 
threshold levels of 1% (Churchill and Doerge, 1994). The important property of this 
method is that it does not depend on the distribution of the data. A permutation test is 
typically used to determine a threshold value for significance testing of the existence of a 
QTL effect. 
 
Bootstrapping 
 
Bootstrapping, described by Visscher et al., (1996) is a resampling procedure. From the 
original dataset, N individual observation are drawn with replacement. An observation is 
a phenotype and its marker type, hence unlike in permutation testing, the observed 
combinations remain together. Note that some observation may appear twice in the 
bootstrap sample, whereas other may not appear at al. Visscher et al 91996) show that 
confidence are approximated very well with this method, with only 200 bootstrap 
samples used. A bootstrap method is typically used to determine an empirical confidence 
interval for the QTL location, assuming that the QTL effect exists. 
 
Accounting for multiple testing 
In QTL analysis, usually many markers are tested, often for multiple traits and in multiple 
families. The risk of false positives is very high with so many tests. If a 5% significance 
level would be used, we would expect 5% false positives! Therefore, a more stringent 
significance level is usually applied for gnome wide QTL detection, e.g. 0.1%. 
 
In general (quoted from Lynch and Walsh, 1998): 
If n independent tests with significance level α are conducted, the probability that at least 
one test is false positive is  γ = 1 – (1 - α)n. 
 
25 tests with a significance level of 1% would give a probability of 22% to find false 
positives.  It is nearly one for a few hundred tests. 
  
A more stringent level is required (known as the Bonferroni correction): 
 
 α = 1 – (1 - γ)1/n ≈ γ/n. 
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Hence, for 200 tests we would need a significance level of 0.05/200 = 0.00025 to have a 
chance of false positives of about 5%. Usually, a significance level of around 0.1% is 
applied. 
However, test statistics from common analysis are usually not valid. Empirical threshold 
values obtained by permutation testing are more reliable. Permutation testing can also be 
used to obtain genome-wide significance levels, by simply repeating the procedure across 
all markers. 
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