
An Application Programming Interface (API) for
Programmable Access to Animal QTLdb
Zhi-Liang Hu*, Carissa A. Park, James E. Koltes, Eric Fritz-Waters and James M. Reecy
Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, 2255 Kildee Hall, Ames, IA 50011

Abstract
The development of the Animal QTLdb has been successful in terms of its
growing content and numbers of utilities, users, and citations by journal
papers. The success of the Animal QTLdb is partly attributable to the web,
which made it possible for many remote users to access the database
simultaneously through interfaces designed to serve various pre-defined
purposes. We have strived to continually develop the web interfaces by
implementing new functions, query options, and online analysis tools, to
assist users with hypothetical and requested types of data query. To date,
we have developed more than 70 user options implemented in 20+ CGI
programs. Since the development of these tools was driven partly by our
motivations and partly by user demands, and they are implemented on the
server side, the users' ability to alter the ways data are queried and
summarized is limited. Recently we have started to develop a
programmable access (application programming interface, API) platform for
users to write their own scripts to query data. This interface allows users to
script their own logics and query combinations, and possibly set up a cron
job to make the queries automatic. To showcase, we have implemented a
half dozen API portals to accept scriptable access to the database. The
advantage of this platform is that users can modify and run their scripts at
any time, obtain data or data summary, and flag certain data with their own
filters, directly into a tabulated or other preferred format.

Introduction
The utility of the Animal QTLdb is evidenced by the growth in web portal
access, frequency of downloads, and increasing number of citations by
scientific publications over the past 10 years (Hu et al., 2013; and
http://www.animalgenome.org/QTLdb/pubs), yet the demand is
building for better data access and for diverse types of data analysis.
Although we have been trying to meet the challenges by adding more web
portal tools in response to user requests, there is a relatively large lag time
spent developing these tools. To improve our ability to better help the
community, we have developed an application programming interface (API)
for the Animal QTLdb to allow users more expedited data access, and for
implementation of their own data analysis strategies in real time.

We have created the Animal QTLdb API using REST architectural
framework and XML data mark up language following models used in
NCBI's E-utilities (NCBI, 2010). Access to the API tool is through the HTTP
protocol on the internet. Therefore, the API is available for any users with
internet access and the programming ability to make HTTP calls in any
programming language (Figure 1).

Figure 1.
The web resources for the Animal QTLdb API. Please check the URL for
updates (http://www.animalgenome.org/QTLdb/API/), as the tools are under
active development.

Acknowledgements
This work is partially supported by the Animal Genome Bioinformatics Coordinators funds from USDA-NIFA.

Figure 2.
A conceptual REST architecture to show the information flow
where data are handled through HTTP protocol.

Web services
• Apache / Perl / CGI

Database
• DBD / DBI / SQL

Internet accessible,
programmable platform

Scripts in
C#
Java
JavaScript
Perl
PHP
Python
Ruby
Groovy

HTTP
• get
• post

XML

(a) on "info" request

<EINFOresults xmlns="http://www.animal.../def.xml">
<QTLdbSummary>

<Species name="Cattle">
<Count name="QTL">11,543</Count>
<Count name="Publication">505</Count>
<Count name="Trait">481</Count>

</Species>
</QTLdbSummary>
<QTLdbSummary>

<Species name="Chicken">
<Count name="QTL">4,337</Count>
<Count name="Publication">209</Count>
<Count name="Trait">305</Count>

</Species>
</QTLdbSummary>
<QTLdbSummary>

<Species name="Horse">
<Count name="QTL">345</Count>
<Count name="Publication">16</Count>
<Count name="Trait">9</Count>

</Species>
</QTLdbSummary>
<QTLdbSummary>

<Species name="Pig">
<Count name="QTL">11,610</Count>
<Count name="Publication">433</Count>
<Count name="Trait">649</Count>

</Species>
</QTLdbSummary>
<QTLdbSummary>

<Species name="Rainbow Trout">
<Count name="QTL">127</Count>
<Count name="Publication">10</Count>
<Count name="Trait">14</Count>

</Species>
</QTLdbSummary>
<QTLdbSummary>

<Species name="Sheep">
<Count name="QTL">789</Count>
<Count name="Publication">90</Count>
<Count name="Trait">217</Count>

</Species>
</QTLdbSummary>

</EINFOresults>

(b) on "query" for "1:1232‐1923873"

<EqueryResults xmlns="http://www.animal.../def.xml">
<QTL>
<dataType>QTL</dataType>
<symbol>FATTH</symbol>
<id>1317</id>
<location property="chromosome">1</location>
<location property="linkage_map">0.9</location>
<location property="genome_map">50468-180633</location>

</QTL>
</EqueryResults>

Framework and Implementation
The Animal QTLdb API is implemented following REST (REpresentational State
Transfer) architecture. The REST is an inter-computer framework designed for
scriptable, reliable, and automated data request and transport, and is one of the most
widely used architectural styles to build web services. Because it uses coordinated
constraints for components, connectors, and data elements for distributed information
transportation through well-known HTTP protocol (Figure 2), it is relatively
straightforward to program client-side applications.

We have implemented a server-side API platform using Perl/CGI. It serves the client-
side API program calls through Apache web server with data queried from the backend
MySQL database.

Scheme and Usage
We designed the Animal QTLdb API to follow human intuition in the way one would go
about looking into a database, in three logical steps: (1) "info"/"help" query for an
overall idea of what the database has and how the data are organized, or how to use
the API platform; (2) keywords "query" for targeted information; and (3) data "fetch" to
obtain the data located in the above steps. These logical functions are implemented in
three server-side programs called "iinfo", "iquery", and "ifetch". In Box 1 is shown what's
required and how client-side API programs can be structured.

Discussion
The Animal QTLdb API is designed for structured data to be queried and
transmitted in an unambiguous manner. We adhere to XML for reliable data
transfers and parses on the client side. Although it’s possible to support
other data formats, such as JSON, YAML, and CSV, for the time being, we
leave it to client-side programs to convert to or from a needed data format.

References
1. Hu, Zhi-Liang, Carissa A. Park, Xiao-Lin Wu and James M. Reecy (2013). Animal

QTLdb: an improved database tool for livestock animal QTL/association data
dissemination in the post-genome era. Nucleic Acids Research, 41 (D1): D871-
D879.

2. National Center for Biotechnology Information (2010); NCBI Help Manual: Entrez
Programming Utilities. NCBI Bookshelf online, URL:
http://www.ncbi.nlm.nih.gov/books/NBK25501/.

3. Fielding, Roy Thomas (2000). Architectural Styles and the Design of Network-
based Software Architectures. Doctoral Dissertation. University Of California-
Irvine URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

use strict;
use warnings;
use LWP::Simple;
my $api= "http://www.animalgenome.org/cgi-bin/QTLdb/API";

iinfo
my $query = 'info'; #- Command: 'info', 'help'
my $scope = 'cattle'; #- Species: 'cattle', 'pig', etc.
my $email = 'myname@mydomain';

#- option 1:
my $einfo = "$api/iinfo?q=$query&history=y";
#- option 2: with "scope"
my $einfo = "$api/iinfo?q=$query&s=$scope&history=y";
#- action:
my $getinfo = get($einfo);
print "$getinfo\n";

iquery
my $api= "http://www.animalgenome.org/cgi-bin/QTLdb/API";
my $handle = 'genes'; #- Data scope: 'traits',

#- 'publications', 'breeds', 'genes',
#- 'chrloc'.

my $scope = 'cattle'; #- Species: 'cattle', 'pig', etc.
my $query = 'holstein'; #- Breed name
my $query = 'bone'; #- Key words

$query =~ s/\s/\%20/g; #- Use URL-safe encoding
my $myquery = "$api/iquery?q=$query&s=$scope&h=$handle&history=y";
my $query_results = get($myquery);
print "$query_results\n";

ifetch
my $query = '12890, 12896, 12925, 13826, 15090, 15110, 17227, 17228,
17241, 17242, 17730, 17734, 17741 '; #- QTL IDs, may be from ‘iquery’
my $scope = 'pig'; #- Species: 'cattle', 'pig', 'chicken', etc
my $fetch = "$api/ifetch?q=$query&s=$scope&history=y";
my $fetched = get($fetch);
print "$fetched\n";

Program Keys Property Values

iinfo query (q) required "info", "help"

scope (s) required Species, e.g. "cattle", "horse", etc.

iquery query (q) required Any key word

scope (s) required Species, e.g. "cattle", "horse", etc.

handle (h) optional "publications", “traits", "breed",
"genes", "chrloc"

ifetch fetch (f) required A string of QTL IDs delimited with
comma.

format (m) optional "XML"(default), "GFF", "CSV", etc.

Table 1.
Programs and parameters used in the QTLdb API. (a) Basic programs and
parameters; (b) Additional parameters.

Programs Keys Property Values

iinfo, iquery, ifetch email (e) required a valid email
address for contact

usehistory (u) optional "y" vs "n"

(b)

(a)

Results
The results from our recent developmental efforts on a new Animal
QTLdb API presented here are preliminary. We show the common
architectural syntax, parameters, and options (Table 1) in actual
client-side program examples in Perl (Box 1). We try to show the
logic and parameters in a straight forward manner, so that users
can follow the examples to program their own client-side
applications in any other languages as long as the programs
support HTTP communication calls over internet (Figure 2). These
results are also available online (Figure 1). Since this work is
under active development, future changes are expected.

This platform is also designed to provide user space on the server
to allow additional functions for registered users. For example an
application programmer may chain query actions and the API
server may save a query history for the user for easier query
interactions. The privileged features will be available in the coming
weeks.

Box 2
Sample XML-representations of Animal QTL API outputs

Box 1
The three server-side programs that accept API/HTTP calls. The comment lines give
limited annotation of the functions, purposes, and options on the main parameters as
defined in Table 1.

http://rest.elkstein.org/2008/02/using-rest-in-c-sharp.html
http://rest.elkstein.org/2008/02/using-rest-in-java.html
http://rest.elkstein.org/2008/02/using-rest-in-javascript.html
http://rest.elkstein.org/2008/02/using-rest-in-perl.html
http://rest.elkstein.org/2008/02/using-rest-in-php.html
http://rest.elkstein.org/2008/02/using-rest-in-python.html
http://rest.elkstein.org/2008/02/using-rest-in-ruby.html
http://rest.elkstein.org/2008/02/using-rest-in-groovy.html

	Slide Number 1

