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Introduction 
 
In the last lecture you found out about regression and maximum likelihood methods 
for detecting QTL.  The extension to cater for multiple interacting QTL is best 
illustrated on the basis of analysis by regression. 
 
 
The Gametic Relationship Matrix approach 
 
In the fullest implementation of this approach, we first set up a symmetrical matrix 
that contains a row and column for each gametic haplotype (2 per animal, one from 
each parent) in the population of animals that we have.  Such a matrix is specific to 
the chromosomal region of current interest.  Each element in this matrix is then the 
probability of identity-by-descent for the representations of this region (one 
representation per gamete).  Here are simple examples of this “Gametic Relationship 
Matrix” (GRM).  Notice that without marker information we must resort to simple 
segregation probabilities – however, marker information allows us to be more 
‘surgical’ in allocating identity-by-descent probabilities: 
 

The Gametic Relationship Matrix

Dad Mum Prog.

Site 1 2 3 4 5 6

Dad 1 1 0 0 0 .5 0

2 0 1 0 0 .5 0

Mum 3 0 0 1 0 0 .5

4 0 0 0 1 0 .5

Prog 5 .5 .5 0 0 1 0

6 0 0 .5 .5 0 1

Dad Mum Prog.

Site 1 2 3 4 5 6

Dad 1 1 0 0 0 .9 0

2 0 1 0 0 .1 0

Mum 3 0 0 1 0 0 .1

4 0 0 0 1 0 .9

Prog 5 .9 .1 0 0 1 0

6 0 0 .1 .9 0 1

 Dad                        Mum

 1   2                       3   4

               Prog.

               5   6

 D a d                        M u m
A   B                        A   C
1    2                        3    4

P r o g
A   C
5    6

 
Figure. (From Kinghorn and Clarke (1997).   Gametic relationship matrices (GRM) for a QTL are of 
dimension 6 sites x 6 sites for the simple 3-animal pedigree shown.  Elements of the GRM are 
probability of identity by descent of the alleles at the prevailing pair of sites.  In the GRM to the left, no 
marker information is available, and, for example, probability of identity by descent between sites 4 
and 6 is 0.5, as site 6 (maternal) could have inherited from sites 3 or 4 with equal probability.  In the 
GRM to the right, a marker with alleles A, B and C is available, and for example, probability of 
identity by descent between sites 4 and 6 is 1, for the marker locus.  If the QTL is linked with a 
recombination fraction of 0.1, then the probability of identity by descent between sites 4 and 6 is 0.9, 
for the QTL, with a 0.1 probability (in the event of recombination) for sites 3 and 6.  Special attention is 
required where there is ambiguity of marker allele inheritance (Wang et al., 1995). 
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You can visualise regions of identity-by-descent in the following diagram (it looks 
better in colour!): 

Q

q

q

q

q

q

q

q

Q

q

q

q

q

q

Q

q

q

q

q

q

Q

q

Q

q

With a good data set, the GRM gives us a lot of information for mapping.  In the 
diagram above, the top-left founder animal has QTL allele Q in its paternally inherited 
region of haplotype (coloured red).  For all its descendants, the GRM gives us 
probabilities that the have inherited the same bit of DNA, holding that Q allele.  We 
can then simple regress their phenotypes on these probabilities to get an estimate of 
the effect of Q on phenotype.  Quite simple really! 
 
The strategy is to construct a GRM (or a subset of it) for each location in the genome, 
and test the goodness of fit of the resulting regression.  We end up with something 
like this for each chromosome: 
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QTL detection with markers
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Here the goodness of fit is a LOD score, described elsewhere. 
 
 
Detecting multiple QTL 
 
This all works well.  However, if there is more than one QTL of significant effect, we 
can do better.  One approach is Composite Interval Mapping.  Once we are happy 
about the most likely position and effect of a QTL, we fix that in the analysis – we 
correct all the animal phenotypes for the most likely impact of that QTL on their 
performance – and then repeat the process to look for another QTL. 
 
This has two problems: 
 

• The estimated position of the first QTL can be influenced by the second QTL, 
and vice-versa.  This is especially dangerous for linked QTL.  A method to 
simultaneously locate the two QTL is preferable. 

 
• Life is complex – and that means that genes (or gene products) interact with 

each other to produce the organisms that we all are.  The value of a particular 
gene variant will differ between genetic backgrounds.  In some cases it will be 
the weak link to achieving high merit, and in others it will not.  This means 
that we should ideally look for interacting sets of genes.  Otherwise we could 
miss some important genes – and opportunities to exploit them. 
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Detecting multiple interacting QTL 
 
We can nominate two separate positions in the genome as candidate locations for two 
QTL.  We can then construct a GRM for each position, and carry out a 2-locus 
regression, as outlined below, fitting interaction effects between the two loci, as well 
as additive and dominance effects within each locus. 
 
How can we find the best fitting two positions?  The following paper demonstrates an 
approach that works efficiently, using a genetic algorithm: 
 

Carlborg, O., Andersson, L. and Kinghorn, B.P. 2000.  The use of a genetic algorithm for 
simultaneous mapping of multiple interacting quantitative trait loci.  Genetics.  In Press 

 
The genetic algorithm (GA) works by “breeding” the best solution to the prevailing 
mathematical problem.  In this case, the “DNA” that the GA uses is simply the 
candidate positions for the two (or more) QTL.  Each of these is a candidate solution 
to the problem of QTL locations.  Each candidate solution competes to become a 
“parent” in the next generation.  They compete on a criterion that is simply the 
goodness of fit of these positions to the phenotypic data and pedigree on hand. 
 
The successful “parent” solutions then combine in some way – exchanging 
information, and mutate to some extent, to generate a new generation of candidate 
solutions. 
 
If this is difficult to understand, it is because you are a geneticist, and not an engineer.  
We geneticists get confused at first because the thing we want to optimise is all to do 
with genetics and life becomes confusing!!  If we were optimising the design of a 
supersonic jet, then there would only be one set of genetic parameters to think about. 
 

Model for fitting interacting QTL 
 
Here is a simple one-locus model of genetic effects, similar to that found in all texts in 
this area. II, Ii and ii are the genotype values for combinations of the two alleles I and 
i, µ is a general mean, Ai is the additive affect and Di the dominance effect at locus i.  
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We can now expand this to cater for effects at two loci.  The classical statistical 
approach (eg. Jana 1971) is typified as follows: 
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The number of parameters to handle has increased from three (µ, Ai  and Di) to nine 
(µ, Ai, Aj, Di, Dj, plus interaction terms AAij, ADij, ADji, and DDij).  Notice that each 
locus here has two alleles. 
 
More detail is here extracted from Carlborg et al. (2000): 
 
“ 
The objective function used was the residual sum of squared errors from a weighted least squares 
approach to QTL mapping. The method is the extension of the method of Jansen (1992) to the two-loci 
linear model G = m+A1 +A2+D1 +D2 +AA12 +AD12 +AD21 +DD22 as indicated by the author. The 
parameters of the model will be explained below. Markers have not been used as cofactors and 
successive iterations in the EM algorithm have been removed to increase the computational efficiency 
during the evaluation procedure. The modifications needed to the single QTL mapping procedure 
described by Jansen and Stam (1994) when implementing the two QTL model included duplication of 
each individual nine times (instead of three times i.e. once for every possible two-QTL genotype) and 
the use of an expanded design matrix (X). The design matrix for the two-locus linear model has been 
described by Jana (1971). The weight for each observation was taken to be the product of the 
conditional probabilities of the single QTL-genotypes given the markers (Haley and Knott 1992) at 
each of the two fitted QTL. The estimates of the model parameters can be found as:  
 
β= (X T WX) -1 XT WY 
 
σ2 = (1/N)(Y - X β)T W(Y - X β) 
 
where Y is the complete data vector, X is the design matrix for the complete data, W is the diagonal 
matrix of weights, β is the vector of the regression parameters, σ2 is the normal variance and N is the 
number of individuals (Jansen and Stam 1994).  
 
The residual sums of squared errors can then be calculated as:  
 
SSE = (Y - X β)T W(Y - X β)  
 
The method described above can easily be extended to take account of background QTL in the 
analysis. Two extra ga-genes are added to the genetic algorithm and two extra columns are added to the 
X matrix for each background QTL. The extra ga-genes represent the chromosomal location for the 
QTL and the columns in the design matrix are to contain the QTL indicator variables a and d (Haley 
and Knott 1992), for a QTL at the location given by the ga-genes. The rest of the evaluation procedure 
is the same as before. We have evaluated the increase in computational demand for a simultaneous 
search for more than two QTL using this method, but have not investigated any other properties.  
“ 
 

Some results 
 
There are two advantages in this approach: 
 

• The genetic algorithm gives a fast search, saving much computer time.   It 
increases the computational demand by a factor of 3 to 5 when compared 
to the conditional search (Carlborg et al. 2000). The improvement in 
computational efficiency of the GA as compared to an exhaustive 
enumerative search (looking at all pairs of locations in a genome size of 
2,000 cM using a resolution of 1 cM) was by a factor 133 for two QTL. An 
expansion of the search to additional dimensions by also searching for 
background QTL simultaneously leads to further computational 
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advantages for the GA based search. Improvements are in the order of 
65,000 for three QTL and 1.7 x 10 7 for four simultaneously fitted QTL. 
 

• As Carlborg et al. (2000) report, the results from the simulation study with 
18 QTL (Figure below) showed that the genetic algorithm based search 
had higher relative efficiency to detect the simulated pair of epistatically 
interacting QTL than the conditional search (ie. composite mapping 
approach, as described above) for all epistatic models tested. The genetic 
algorithm had a relative efficiency of 100% for all epistatic models except 
for the duplicate. The conditional search had between 86 and 96% relative 
efficiency for the dominant, recessive and inhibitory epistatic models and 
100% relative efficiency for the complementary model. The difference in 
relative efficiency for the search methods was very large for the duplicate 
epistatic model, where the conditional search only had a relative efficiency 
of 21%, while the genetic algorithm based search had a relative efficiency 
of 93% (this could grow to 100% with better tuning of the GA 
parameters).  In the simulation where two interacting QTL explained all 
genetic variation, both methods had a relative efficiency of 100%.  

 
 
 

 
 
 
As Carlborg etal. note: “The genetic algorithm is a general tool to search large 
parameter spaces and could be of use in many other areas in QTL mapping. In this 
study we have used a genetic algorithm in the search for two interacting QTL in a 
cross between inbred lines, but the method can also be used for analyses of crosses 
between outbred lines and in searches for more than two QTL. For analyses of 
outbred lines, the genetic algorithm could also be used when testing for QTL 
segregation within the founder lines. This would be implemented by using a genetic 
algorithm to group the haplotypes from the founders in allelic groups and in this way 
obtain the most likely allelic constitution for the founders and other individuals in the 
pedigree. This results in greater detection power because of more extreme 
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probabilities of identity-by-descent of chromosomal regions between phenotyped 
individuals and each founder.“ 
 
 
Acknowledgement:  Thanks to Örjan Carlborg*, Leif Andersson* and Brian 
Kinghorn for permission to use direct quotation. 
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